..,w

H:—

m.ﬂllﬁ...__.. i
E.i_. TR T L ..._n £

l.llllul —

j TIi0 __.mh_u.:a.: .__LJL

ﬁLELT’

.
.

Tt
Al

.~

al

Y

.

gl
e

s) \-

_.Vﬁ ;

*]

v

———
L oy
-

A

A

Vg

v

[)

~'0
N

TEEEEET ..am;.;.......,.}:.”
ol T

B sy 1 EE:EEL

PSS R IR e S

__LL :_,~.LLLLMakL Lnli_.

.t

444444!&!4404 JJla u_

.Z ZL. EEI_ 1z s

_—.f-f R, = A

lllllllll'.'...-‘
Tﬂ.l...‘....l..ﬂ----.

b i —S-I--..--?n"-.-.--..
T | SESE S CECESRL.SSEFNSSESREESE
"y «-n-Hﬂ“ﬂ.ln“”--.-n.----
.J~n- SSSESSSEsSS

la

_ -»‘l--l-l--
W3 SSRESTESRLLTLLE

lll.'

\

\/

LA\
.7
&

®

.a,‘ ‘ '.
: _...-nnn.nnnn“n_._nnnu.a .,mmmm.m-m

|

uFInlw--.ﬂ
{ J_--“-nmn-
n,zu-pmn-nm

- .. e

EERE

- ..
..... i - EEEE
. —it 1
i -taeats nl.!tl;ll...!llxnu ESm

- g - D ————
e =

rfhh B g ool

iquée en
informatique

i

0

ique

t

recherche appl

linguis

al rali

t -
3
) i
‘m 'o -

EEBNOED W T b

- J-

J._... e

Introduction to Artificial Intelligence

H o

EEnw
S
SETEEET

m
lg:ll

o
T

JuPpERS=meEn 11

ité
de Montré

Univers

mumnE e numny (i
HERENESENOEN I

W ymmEE e |

© Certain Slides Adapted From or Referred To...

® Slides from UC Berkeley CS188, Dan Klein and Pieter Abbeel
¢ Uninformed Search: https://inst.eecs.berkeley.edu/~cs188/su21/

https://inst.eecs.berkeley.edu/~cs188/su21/

©®© Plan

® Agents to solve problems
® Types of problem
® Problem formulation

® Sample search problems

@ Problem solving by searching
® Breadth-First Search
® Depth-First Search
e Uniform-Cost Search

Agents to Solve Problems

© Problem-Solving Agents

@ Problem-Solving Agent 1s a Goal-Based Agent that decides what to do by finding sequences of
actions that lead to desirable states.

® The computational process 1t undertakes 1s called search.

@ Problem-solving agents use atomic representations: states of the world are considered as
wholes

¢ Planning agents use factored or structured representations of states

@ Informed v.s. Uninformed algorithm: whether the agent can estimate how far 1t 1s from the
goal

© Example: Travel in Romania

® On vacation in Romania; currently in Arad.

Oradea
@ Formulate the goal: Neazut
® Be in BUChareSt s Zerind 151 87
N (g
@ Formulate the problem: Sibi | Fagaras 92
e States: be in different cities He “ Vaslui
® Actions: driving between cities Timisoara Rimnicu Vilcea
L ueo: Pitesti \>' ! o
ugoj
@ Find a solution: 70 08 |
o + Mehadia o1 25 i Hirsova
® Sequence of cities, e.g., ". ricent y
oq o 75 138
Arad, Sibiu, Fagaras, Bucharest Drobeta B 120 Bucharest
90
Craiova Eforie

Giurgiu

©® Problem-Solving Agents

SENSOrs

environment
agent N

actuators
e Formulate Goal

e Formulate Problem

oStates
eActions
e Find Solution

© Problem formulation

A search problem is defined by:

1. State space
A set of possible states the environment can be 1n.

2. Initial state
Where the agent starts 1n

3. Goal test
Usually a condition, sometimes the description
of a state

4. Successor function ‘N, 1.0 u
Include action and cost: describe how state changes /

with an action, and the cost of applying action a to
transit from state s to s’

\

llEIII 1.0

A solution 1s a sequence of actions (a plan) which transforms the start state to a goal state

© What is in a State Space?

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

" Problem: Pathing = Problem: Eat-All-Dots
= States: (x,y) location = States: {(x,y), dot booleans}
= Actions: NSEW = Actions: NSEW
" Successor: update location " Successor: update location
only and possibly a dot boolean

" Goal test: is (x,y)=END " Goal test: dots all false

Abstraction

® Our formulation of the problem (e.g., getting to Bucharest) 1s a model—an abstract
mathematical description—and not the real thing.

® The process of removing detail from a representation is called abstraction.

Seven Br/dges of Kon/gsberg

5
» - =t

A an i g uqr m“&‘*ﬂﬁ :u(’......
‘ Yy =39 mc‘,ymu»({-'&r"

/ oL e
:IM-I
v % >
2B M
a4k 4

e
‘} - e Y »

I FEg ‘

! :

........ £l - . -~
P .,Eum* “*s:\ 7 &

T "‘"1, q—w
V-n'_* ’I ‘(PRI ‘“}“‘
b G

Go around the city taking each bridge once and only once?
In 1735, Euler showed that this is Impossible using graph theory and topology.
Solution in graph theory: for this to be possible, each node must have an even degree.

® Example: Route finding

] Oradea

Neamt
N
Zerind 87
75 151
- lasi
Arad L
o 92
- Sibiu Fagaras
H
113) Vaslui
80
Timisoara - Rimnicu Vilcea
142
. . 211
Lugoj Pitesti
N
70 98
85 & Hirsova
Mehadia 101 Urziceni
- 86
75 138 Bucharest
Dobreta IJ_'L 120 00
N
Craiova o Eforie
J Giurgiu

Problem: find path from Arad to Bucharest

® Example: Route finding

Oradea
! States Noat
87
Zerind 151
- lasi
Arad B Actlons
o b v 9
IDIU Fagaras
B 99 -
118 [] SOI“thn) Vaslui
Timisoara
142
11 Lugoj
70
25 B 23 Hirsova
¢I Mehadia i.‘ Urziceni
’ 86
75 d 138 p@cCharest
Dobreta 120
L/ 00 Goal
Craiova Eforie

-4 Giurgiu

® Example: Route finding

@ KFormulate goal: Neamt
. []
e Be in Bucharest . 87
J lasi
Arad L
92
@ Formulate problem: Sibiu . Fagaras
. o o | .
e States: various cities e “ A Vaslul
e Actions: go to adjacent city Timisoara - mmieu Vileea
. 142
® (Goal test: whether in Bucharest Lugo) Pitesti \2!!
|
e Path cost: distance 70 o A—2 Hirsova
H’] Mehadia 101 Urziceni
- 86
. . > 138 Bucharest
O Find solution: Dobreta L. 120 . %0
. . Craiova i
e Sequence of cities - d Giurgiu Flone

® c.g., Arad, Sibiu, Fagaras, Bucharest

Formulate tasks as S€d rCh | ng

Where is the Nlap?
State Space Graphs
and SearCh Trees

@ State space graph

@ State space graph: A mathematical representation of a search problem
® Nodes are (abstracted) world configurations
® Arcs represent successors (action results)

e The goal test 1s a set of goal nodes (maybe only one)
@ In a state space graph, each state occurs only once!

® We can rarely build this full graph in memory (it’s too big), but 1t’s a useful 1dea

@ State space graph

(& &)

ol L7

Tiny state space graph for a tiny
search problem

State space graph for Pacman:
eat all the dots

@ Search tree

_ This is now / start

. - _ Possible futures

@ A search tree:
o A “what 1f” tree of plans and their outcomes
e The start state 1s the root node
® Children correspond to successors
® Nodes show states, but correspond to PLANS that achieve those states
e For most problems, we can never actually build the whole tree

® State Space Graphs vs. Search Trees

Each NODE in in
State Space Gra ph the search tree is Search Tree

an entire PATH in

the state space
graph.

We construct both
on demand — and
we construct as
little as possible.

@ State Space Graphs vs. Search Trees

Consider this 4-state graph: How big is its search tree (from S)?

@ State Space Graphs vs. Search Trees

Consider this 4-state graph: How big is its search tree (from S)?

@ State Space Graphs vs. Search Trees

Consider this 4-state graph: How big is its search tree (from S)?

Important: Lots of repeated structure in the search tree!

Sample Search Problems

@ Example: Vacuum World

@ Formulate problem:
® States: ?
® Actions: ?
o Goal test: ?
e Path cost: ?

L ~
\\
S ~—
\\
~—
R
(BT
2R 2R
L
_— ‘\
\x// > s
- \\

@ Example: Vacuum World

@ Formulate problem:
e States: dirt and robot location
e Actions: left (L), right (R), suck (S)
e Goal test: no dirt at all locations
e Path cost: 1 per action

— T~
8 S —
- - \\
- ~—~—
R R
L |=B] =AM r L(= - | = R
2R 2R 02R 2R
L L
\ /
_ S ™~ _—_5s N
S Py S

@ Example: The 8-puzzle

@ Formulate problem:
e States: location of tiles
e Actions: move blank left, right, up, down
e Goal test: given goal state
e Path cost: 1 per move

,

Initial state

Goal state

@ Example: The 8-puzzle

91/ 2
P

Size of the state space = 181,440

15-puzzle - .65 x 1012
0.18 sec

6 days
24-puzzle = .5 x 10»

12 billion years

10 million states/sec

@ Example: Robotic Assembly

@ Formulate problem:

e States: real-valued coordinates of robot
joint angles parts of the object to be
assembled

® Actions: continuous motions of robot
joints

e Goal test: complete assembly

e Path cost: time to execute

:

©® Example: Robotic Assembly

© Example: The 8-Queens

@ Formulate problem: 6
® States: ?
® Actions: ?
e Goal test: ?
e Path cost: ?

Place 8 queens in a chessboard so that
no two queens are in the same row,
column, or diagonal.

@ Example: The 8-Queens

@ Formulation 1:

States: Any arrangement of O to 8
queens on the board.

Actions: Add a queen 1n any square.

Goal test: 8 queens on the board, none
attacked.

Path cost: 1 per move.

- 648 states with 8 queens

Place 8 queens in a chessboard so that
no two queens are in the same row,
column, or diagonal.

© Example: The 8-Queens

@ Formulation 2:

e States: Any arrangement of k =0 to 8
queens 1n the k leftmost columns with
none attacked.

e Actions: Add a queen to any square 1n the
leftmost empty column such that 1t 1s not
attacked by any other queen.

® Goal test: 8 queens on the board, none
attacked

e Path cost: 1 per move

- 206/ states

S
1.5:-:f.

L
-l

Place 8 queens in a chessboard so that
no two queens are in the same row,
column, or diagonal.

© Exercise: River Crossing

A Ridd]e:
A Wolf, a sheep and a cabbage

need to cross the river.

How can you bring them across, one by one,
without the sheep eating the cabbage,

nor the wolf eating the sheep?

-]
TANKNY S o
a Boa ‘e

Jqﬂ“& » . iy

—
T

S s 3¢

@ Answer: River Crossing

@ State space S: all valid configurations
e [Initial state: I = {(CSDF,)}

e Goal state: G= {(,CSDF)}

® Actions: states reachable 1n one step from
S

e Succs((CSDFE))) = {(CD, SF)}

¢ Succs((CD, SF)) = {(CD, FS), (D, CFS),
(C, DES)}

e Path cost: 1 for each transition

©® Answer: River Crossing

@ ‘ﬁ h & A directed graph in state space

Oala®

goal

THE TRANELUING SHDLESMAN PROBLEM

@ Other example problems e e

AND RETURN T

Ny oL
@ Travelling Salesperson Problem (TSP) [P
e Fach city must be visited exactly once — find the

shortest tour

BODING MORE. STOPS TOKES
LONGER- BND LOHNGER. BMD LONGERZ T FiaVRE T OUT

® VLSI (Very Large Scale Integration) Layout

e (Gi1ven schematic diagram comprising components
(chips, resistors, capacitors, etc) and interconnections
(wires), find optimal way to place components on a
printed circuit board, under the constraint that only a
small number of wire layers are available (and wires
on a given layer cannot cross !)

@ Robot navigation
® A gencralization fo the route-finding problem.

Problem Solving by Searching

© Searching as problem solving technique

Problem solving by searching:

® Searching 1s the process of looking for the solution of a problem through a set of possibilities
(state space).

® Search conditions include :
e Current state - where one 1s;

e (Goal state - the solution reached; check whether 1t has been reached;
e (Cost of obtaining the solution.

® The Solution 1s a path from the current state to the goal state.

© Searching as problem solving technique

Process of Searching:

® Searching proceeds as follows:
® (Check the current state;
e Execute allowable actions to move to the next state;

® (Check i1f the new state 1s the solution state; 1f 1t 1s not, then the new state becomes the
current state and the process 1s repeated until a solution 1s found or the state space 1s
exhausted.

@ Explore the search tree to find solution(s)

Assumptions in basic search:

® The environment 1s Static

® The environment 1s Discretizable
® The environment 1s Observable

® The actions are Deterministic

@® General tree search

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strateqgy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

@® Basic idea:

e offline, simulated exploration of state space by generating successors of already-explored
states (a.k.a.~expanding states)

@ Main question: which fringe (or frontier) nodes to explore?

® Example: Route finding

] Oradea

Neamt
N
Zerind 87
75 151
- lasi
Arad L
o 92
- Sibiu Fagaras
H
113) Vaslui
80
Timisoara - Rimnicu Vilcea
142
. . 211
Lugoj Pitesti
N
70 98
85 & Hirsova
Mehadia 101 Urziceni
- 86
75 138 Bucharest
Dobreta IJ_'L 120 00
N
Craiova o Eforie
J Giurgiu

Problem: find path from Arad to Bucharest

® Example: Route finding

vuﬂo‘-."""‘." \\ ‘~~~-
" N
.-—---‘.—s-'-‘ \\\ ~~~“~
-
“—"’. \ ~~~
.-’--“ . -
’ | -". . el .
¢ Sibiu - N
\‘-..__ u - ”-‘-'.‘.. h-'-.‘-
..-a.--'“,’ \\“'\,_ :rlmlsoara) ,,“—ﬁ--“.
d“-’ rd “5 o - - — Z | .
f.v,"’ // \\ "\-., /K\—‘ \‘ ermd)
- ¢ N ~ - ’ N ‘-"/\"‘"""
- s A T I \
,-a'" g * . , | |
- , \ . 7’ N s \
\ ad) ~ . N s‘-\ ,, \\ ,, \\
™ o - F g — ‘-— —— f) /
Arad > < Fagaras > ¢ Oradea > : \ ! :
A’r a ea_ -)
™ - -
- - ” \\ ” N ‘-_ - \.‘ ad) l L : ~ i \
~ - | S - : - _,_,.-"’ N Ar d O
- ™ ,/"’ (I ,W\ N - .._—-“" radea)
~ e . PPl ~—mc "
” [,\\ ,/ \
~ e \\

- |
S - ~
o~ ~ - |
~ - !
~ - .
-~ I ~ -~ ~

@ Example: Route finding

Arad

- N~ PN PAEN
- r N ™ r N s \
- / \ =~ / \ / N
- ’ \ =~ / \ p \
..-“’ g N ""-... g \ / p Y
- s % - r B . h
- / . - / \ h
- ’ \ il > s \ ‘ S
,f’ ’ \ T~ ’ \ 4 Ny
- -~ pad N - - - gl - A, [- i T =
{ ¢ {_ Ar d ‘. L (_ Arad O d
(__ Arad) Fagaras) Oradea I RJIIIIIILU\IICC&) (._ Arada . {__ Lugoj . < ad) radea A
il —--"‘ -_" "'«—._ —“" i —"" - — —"" “-'-'W-‘-" T --—", "'——. —-"
,f’ﬁ'\\ / -~ ’ \ _,,"1‘"\ T N T # \
| ~ ~ | ~ - | ~ - - g | ~ ” ~
4 . # .~ -~ ~ -~ ~ -~ ~ -~ - - - & -
/" I \\. ~ ~ &~ ~ // | \\ z, ! \s. ” *~ /" I \\ -~ \

® Example: Route finding

Arad

Coibin > Toisoar Cerind>

N SN
s A Vs b
4 b y b
r “ y Y
s N\ 7 Y
’ \ P \
’ ~ ’ \\
4 \\ r \
s
. . . {l ‘‘‘‘‘‘‘‘‘ \) /’ ####### 'h“\') /“‘"‘—“--{_d-~\"") /“"—6—\d—‘h\\
@ Fagaras Oradea Rimnicu Vilcea (._Arad) <{__Lugoj _. (.. Arad _» {_Oradea_.
”, I \\\ // \\' "/ \\ /f’ | \\\ .r',, I \\\ ,/, \\\ /’, I \\\ ,// \\\
i I ™~ 7 o g N g ! ™ P ! ™ ’ ~ g | ~ ” ~

® Implementation: general tree search

function TREE-SEARCH(problem, fringe) returns a solution, or failure
fringe < INSERT(M AKE-NODE(INITIAL-STATE([problem)), fringe)
loop do
if fringe is empty then return failure
node < REMOVE-FRONT(fringe)
if GOAL-TEST|problem|(STATE[node]) then return SOLUTION(node)
fringe «— INSERT ALL(EXPAND(node, problem), fringe)

function EXPAND(node, problem) returns a set of nodes

successors <— the empty set

for each action, result in SUCCESSOR-F'N|[problem|(STATE[node]) do
s <—a new NODE
PARENT-NODE[s] - node; ACTION|[s| «— action, STATE[s| < result
PATH-COST[$] < PATH-COST[node] + STEP-COST(node, action, s)
DEPTH[s] - DEPTH[node| + 1
add s to successors

return successors

@ State vs. Node

@ A state 1s a representation of a physical configuration

® A node 1s a data structure constituting part of a search tree, includes state, parent node, action, path
cost g(x), depth

parent, action
A

4 Node depth =6
g=6
1 8
< ale
3 2 St

@ The Expand function creates new nodes, filling in the various fields and using the
SuccessorFn of the problem to create the corresponding states.

® Fringe (Frontier)

@ If you're performing a tree (or graph) search, then the set of all nodes at the end of all visited
paths 1s called the fringe, frontier or border.

® Implemented as a queue FRINGE.
® INSERT (node, FRINGE)
¢ REMOVE (FRINGE)

@ The ordering of the nodes in FRINGE defines the search strategy.

Arad

CZerind > Fringe

o>
e

g A
| f// \\\ //,/ \\\\
__,_.4/_.._._“ ",..—-:‘-—k__._‘ _____ ' - o
‘l Fagaras l Oradea I Rimnicu Vilcea ’ . Arad . <_ Lugoj . (_ Arad . <_ Oradea .
h‘——"’-’F:-——. h‘-—/w_:-_r h‘-—’-’.ﬁ:'—‘ hh_/-K:.-‘
27 1 So ” ~ »7 | . - ~
P I e 7 . g | ~ . »7 o

® Fringe (Frontier)

ends of
paths on

frontier / . o >0 >y
Z P

e

‘*

~

\
explored nodes*\\\
\

\A unexplored nodes

/4 R*0+0

° e

@ Search strategies

® A search strategy 1s defined by picking the order of node expansion

@ Strategies are evaluated along the following dimensions:

e Completeness: Is the algorithm guaranteed to find a solution when there 1s one, and to
correctly report failure when there 1s not?

e (Cost optimality: Does 1t find a solution with the lowest path cost of all solutions?

¢ Time complexity: How long does it take to find a solution? This can be measured 1n seconds,
or more abstractly by the number of states and actions considered.

e Space complexity: How much memory 1s needed to perform the search?

® Time and space complexity are measured in terms of
¢ /H: maximum branching factor of the search tree
e (: depth of the least-cost solution
¢ m: maximum depth of the state space (may be o)

@ Uninformed vs. Informed Strategies

@ Uninformed (or blind) strategies have no clue about how close a state 1s to the goal(s).

@ Informed (or heuristic) strategies exploits such information to assess that one node 1s “more
promising”’ than another.

» look for solutions by 1. They are almost always more
systematically generating new efficient than uninformed
states and checking each of strategies.
them against the goal. 2. May reduce time and space

complexities.
1. Itisvery inefficient in most 3. Evaluation function f(n)

cases. measures distance to the goal.
2. Most successor states are 4. Order nodes in Frontier

“obviously” a bad choice. according to f(n) and decide
3. Such strategies do not use which node to expand next.

problem-specific knowledge

@ Uninformed Strategies

Uninformed search strategies use only the information available 1n the problem definition.
® Breadth-First Search

@ Depth-First Search

® Uniform-Cost Search

® Depth-Limited Search

@ Iterative Deepening Search

Breadth-First Search

@ Breadth-First Search (BFS)

® BFS first visit all the nodes at the same depth first and then proceed visiting nodes at a deeper
depth (strategy: expand a shallowest node first)

@ Breadth-First Search Q
.\ / Can be reached by either paths

® A node can be reached from different nodes using w
different paths /\

® But we need to visit each node only once. .\ Mark discovered
@
® S0, we mark each node differently into 3 categories - ®
unvisited, discovered and complete. -
. Don’t visit if already discovered

e [Initially, all nodes are unvisited. After visiting a node

for the first time, it becomes discovered. w

® A node is complete if all of its adjacent nodes have
been visited.

e Thus, all the adjacent nodes of a complete node are 9
either discovered or complete. _
? <—Discovered
|

e @ @ <— Unvisited

https.//www.codesdope.com/course/algorithms-bfs/

«— Complete

https://www.codesdope.com/course/algorithms-bfs/

@ Breadth-First Search

® Thus after visiting a node, we first visit all 1ts sibling and then their children.
® We can use a first in first out (FIFO) queue to achieve this (Fringe 1s a FIFO queue).

@ Starting from the source, we can put all 1its adjacent nodes 1n a queue

@ Breadth-First Search

o m §<:>-nn §<:>-
QIHI OHII@
g\/é% §<§>§

°’ N

©@ Breadth-First Search (BFS) Properties

@ Is it complete?

® Yes. d must be finite if a solution exists. -
h 1 node
@ Is it optimal? b nodes
- d tiers
® Only if costs are all 1. < b2 nodes
me?
® Search time’ _ o b9 nodes

® 1+b+b*+b+---+b%=0(b?)

O
® Fringe space?
b™ nodes

e Has roughly the last tier, so O(b%)

O

Depth-First Search

® Depth-First Search (DFS)

® DFS first explores the depth of the graph before the breadth 1.e., 1t traverses along the
increasing depth and upon reaching the end, 1t backtracks to the node from which 1t was started
and then do the same with the sibling node.

@ Depth-First Search

@ Similar to the BFS, we also mark the vertices white, gray and black to represent unvisited,
discovered and complete respectively.

® Fringe = LIFO queue, 1.¢., a stack that put successors at front.

:
© e

O
(7) ,

https://www.codesdope.com/course/algorithms-dfs/

https://www.codesdope.com/course/algorithms-dfs/

® Depth-First Search

® Depth-First Search (DFS) Properties

@ Is it complete?

e m could be infinite, so only if we prevent
cycles

1 node
@ Is 1t optimal? b nodes
® No, 1t finds the “leftmost” solution, b2 nodes
regardless of depth or cost m tiers <
® Search time?
e ((bm) Terrible 1f m 1s much larger than d,
but 1f solutions are dense, may be much .
faster than breadth-first. b™ nodes

® Fringe space?

¢ Only has siblings on path to root, so O(bm),
1.e., linear space!

O Exercise: DFS vs. BFS

® When will BES outperform DFS?

® When will DFS outperform BFS?

® Depth-Limited Search

® = depth-first search with depth limit L, 1.e., nodes at depth L have no successors

—» Level 0

® Iterative Deepening Search

@ Idea: get DFS’s space advantage with BFS’s time / shallow-solution advantages
¢ Run a DFS with depth limit 1. If no solution...

¢ Run a DFS with depth limit 2. If no solution...
¢ Run a DFS with depth Iimit 3.

Suppose, we want to find node- '2' of the

o node to be searched given infinite undirected graph/tree. A DFS
starting from node- 0 will dive left, towards

node 1 and so on.
Path followed by

F‘ Whereas, the node 2 is just adjacent to node

a DFS ° o 1.

- Hence, a DFS wastes a lot of time in coming
back to node 2.

An lterative Deepening Depth First Search

overcomes this and quickly find the required
node.

%7,

® Cost-Sensitive Search

BFS finds the shortest path in terms of number of actions.

It does not find the least-cost path. We will now cover
a similar algorithm which does find the least-cost path.

Uniform-Cost Search

® Uniform-Cost Search (Dijkstra’s algorithm)

Strateqgy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost)

Cost
contours

C
| N | Equivalent to breadth-first
a if step costs all equal.

@ Properties of Uniform-Cost Search

® Complete? Yes, 1f step cost > € > 0 (¢ 1s the lower
bound of each action), 1t will never getting caught
going down a single infinite path -

® Time? # of nodes with g < cost of optimal solution,
O(beeiling(C*/ €)) where C* 1s the cost of the optimal C*/¢ "tiers” <
solution.

® Space? # of nodes with g < cost of optimal solution,
O(bceiling(C*/ 8)).

(M)
/

® Optimal? Yes —nodes expanded 1n increasing order
of g(n).

@ Uniform-Cost Search Issues

® Remember: UCS explores increasing cost contours
® The good: UCS 1s complete and optimal!

@® The bad:

e Explores options 1n every “direction”

¢ No information about goal location

@® We’ll fix that soon!

Goal

@ Summary of Algorithms

Criterion Breadth- Uniform-
First Cost
Complete? Yes! Yes!?
Optimal cost? Yes? Yes
Time o?) o't /e
Space oY) o('tlC /e

Depth- Iterative
Limited Deepening
No Yes!
No Yes?
O(b") O(b)

O(b?) 0(bd)

@® Summary

@ All these search algorithms are the same except for fringe strategies
e (Conceptually, all fringes are priority queues (1.€. collections of nodes with attached priorities)
e (Can even code one implementation that takes a variable queuing object

Thanks! Q&A

Université ‘H‘. @) recherche appliquée en
de Montréal rali linguistique informatique

74

