
IFT3335 Lecture 3: Uninformed Search

Introduction to Artificial Intelligence

Bang Liu, Jian-Yun Nie

Certain Slides Adapted From or Referred To…

๏ Slides from UC Berkeley CS188, Dan Klein and Pieter Abbeel
• Uninformed Search: https://inst.eecs.berkeley.edu/~cs188/su21/

2

https://inst.eecs.berkeley.edu/~cs188/su21/

Plan3

๏ Agents to solve problems
• Types of problem
• Problem formulation

๏ Sample search problems

๏ Problem solving by searching
• Breadth-First Search
• Depth-First Search
• Uniform-Cost Search

Agents to Solve Problems

Problem-Solving Agents

๏ Problem-Solving Agent is a Goal-Based Agent that decides what to do by finding sequences of
actions that lead to desirable states.

๏ The computational process it undertakes is called search.

๏ Problem-solving agents use atomic representations: states of the world are considered as
wholes
• Planning agents use factored or structured representations of states

๏ Informed v.s. Uninformed algorithm: whether the agent can estimate how far it is from the
goal

5

Example: Travel in Romania

๏ On vacation in Romania; currently in Arad.

๏ Formulate the goal:
• Be in Bucharest

๏ Formulate the problem:
• States: be in different cities
• Actions: driving between cities

๏ Find a solution:
• Sequence of cities, e.g.,

Arad, Sibiu, Fagaras, Bucharest

6

Problem-Solving Agents7

Problem formulation

A search problem is defined by:

1. State space
A set of possible states the environment can be in.

2. Initial state
Where the agent starts in

3. Goal test
Usually a condition, sometimes the description
of a state

4. Successor function
Include action and cost: describe how state changes
with an action, and the cost of applying action a to
transit from state s to s’

A solution is a sequence of actions (a plan) which transforms the start state to a goal state

8

What is in a State Space?9

Abstraction

๏ Our formulation of the problem (e.g., getting to Bucharest) is a model—an abstract
mathematical description—and not the real thing.

๏ The process of removing detail from a representation is called abstraction.

10

Go around the city taking each bridge once and only once?
In 1735, Euler showed that this is impossible using graph theory and topology.
Solution in graph theory: for this to be possible, each node must have an even degree.

Seven Bridges of Königsberg

Example: Route finding11

Problem: find path from Arad to Bucharest

Example: Route finding12

Actions

Example: Route finding

๏ Formulate goal:
• Be in Bucharest

๏ Formulate problem:
• States: various cities
• Actions: go to adjacent city
• Goal test: whether in Bucharest
• Path cost: distance

๏ Find solution:
• Sequence of cities
• e.g., Arad, Sibiu, Fagaras, Bucharest

13

Formulate tasks as searching

Where is the Map?
State Space Graphs

and Search Trees

State space graph

๏ State space graph: A mathematical representation of a search problem
• Nodes are (abstracted) world configurations
• Arcs represent successors (action results)
• The goal test is a set of goal nodes (maybe only one)

๏ In a state space graph, each state occurs only once!

๏ We can rarely build this full graph in memory (it’s too big), but it’s a useful idea

16

State space graph17

Tiny state space graph for a tiny
search problem

State space graph for Pacman:
eat all the dots

Search tree

๏ A search tree:
• A “what if” tree of plans and their outcomes
• The start state is the root node
• Children correspond to successors
• Nodes show states, but correspond to PLANS that achieve those states
• For most problems, we can never actually build the whole tree

18

State Space Graphs vs. Search Trees19 State Space Graphs vs. Search Trees

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G
a

S

G

d

b

p q

c

e

h

a

f

r

We construct both
on demand – and
we construct as
little as possible.

Each NODE in in
the search tree is
an entire PATH in
the state space

graph.

Search TreeState Space Graph

State Space Graphs vs. Search Trees20 Quiz: State Space Graphs vs. Search Trees

S G

b

a

Consider this 4-state graph: How big is its search tree (from S)?

?

State Space Graphs vs. Search Trees21 Quiz: State Space Graphs vs. Search Trees

S G

b

a

Consider this 4-state graph: How big is its search tree (from S)?

State Space Graphs vs. Search Trees22 Quiz: State Space Graphs vs. Search Trees

S G

b

a

Consider this 4-state graph:

Important: Lots of repeated structure in the search tree!

How big is its search tree (from S)?

s
b

b G a

a

G

a G b G

… …

Sample Search Problems

Example: Vacuum World

๏ Formulate problem:
• States: ?
• Actions: ?
• Goal test: ?
• Path cost: ?

24

Example: Vacuum World

๏ Formulate problem:
• States: dirt and robot location
• Actions: left (L), right (R), suck (S)
• Goal test: no dirt at all locations
• Path cost: 1 per action

25

Example: The 8-puzzle26

๏ Formulate problem:
• States: location of tiles
• Actions: move blank left, right, up, down
• Goal test: given goal state
• Path cost: 1 per move

Example: The 8-puzzle27

9! / 2

๏ Formulate problem:
• States: real-valued coordinates of robot

joint angles parts of the object to be
assembled

• Actions: continuous motions of robot
joints

• Goal test: complete assembly
• Path cost: time to execute
•

Example: Robotic Assembly28

Example: Robotic Assembly29

Example: The 8-Queens30

๏ Formulate problem:
• States: ?
• Actions: ?
• Goal test: ?
• Path cost: ?

๏

Place 8 queens in a chessboard so that
no two queens are in the same row,
column, or diagonal.

Example: The 8-Queens31

๏ Formulation 1:
• States: Any arrangement of 0 to 8

queens on the board.
• Actions: Add a queen in any square.
• Goal test: 8 queens on the board, none

attacked.
• Path cost: 1 per move.

Place 8 queens in a chessboard so that
no two queens are in the same row,
column, or diagonal.

! 648 states with 8 queens

Example: The 8-Queens32

๏ Formulation 2:
• States: Any arrangement of k = 0 to 8

queens in the k leftmost columns with
none attacked.

• Actions: Add a queen to any square in the
leftmost empty column such that it is not
attacked by any other queen.

• Goal test: 8 queens on the board, none
attacked

• Path cost: 1 per move
•

Place 8 queens in a chessboard so that
no two queens are in the same row,
column, or diagonal.

! 2067 states

Exercise: River Crossing33

Answer: River Crossing34

๏ State space S: all valid configurations
• Initial state: I = {(CSDF,)}
• Goal state: G = {(,CSDF)}
• Actions: states reachable in one step from

S
• Succs((CSDF,)) = {(CD, SF)}
• Succs((CD, SF)) = {(CD, FS), (D, CFS),

(C, DFS)}
• Path cost: 1 for each transition

Answer: River Crossing35

A directed graph in state space

Other example problems

๏ Travelling Salesperson Problem (TSP)
• Each city must be visited exactly once – find the

shortest tour

๏ VLSI (Very Large Scale Integration) Layout
• Given schematic diagram comprising components

(chips, resistors, capacitors, etc) and interconnections
(wires), find optimal way to place components on a
printed circuit board, under the constraint that only a
small number of wire layers are available (and wires
on a given layer cannot cross !)

๏ Robot navigation
• A generalization fo the route-finding problem.

36

Problem Solving by Searching

Searching as problem solving technique

Problem solving by searching:

๏ Searching is the process of looking for the solution of a problem through a set of possibilities
(state space).

๏ Search conditions include :
• Current state - where one is;
• Goal state - the solution reached; check whether it has been reached;
• Cost of obtaining the solution.

๏ The Solution is a path from the current state to the goal state.

38

Searching as problem solving technique

Process of Searching:

๏ Searching proceeds as follows:
• Check the current state;
• Execute allowable actions to move to the next state;
• Check if the new state is the solution state; if it is not, then the new state becomes the

current state and the process is repeated until a solution is found or the state space is
exhausted.

39

Explore the search tree to find solution(s)40

Assumptions in basic search:

๏ The environment is Static

๏ The environment is Discretizable

๏ The environment is Observable

๏ The actions are Deterministic

General tree search

๏ Basic idea:
• offline, simulated exploration of state space by generating successors of already-explored

states (a.k.a.~expanding states)

๏ Main question: which fringe (or frontier) nodes to explore?

41

Example: Route finding42

Problem: find path from Arad to Bucharest

Example: Route finding43

Example: Route finding44

Example: Route finding45

Implementation: general tree search46

State vs. Node

๏ A state is a representation of a physical configuration

๏ A node is a data structure constituting part of a search tree, includes state, parent node, action, path
cost g(x), depth

๏ The Expand function creates new nodes, filling in the various fields and using the
SuccessorFn of the problem to create the corresponding states.

47

Fringe (Frontier)

๏ If you're performing a tree (or graph) search, then the set of all nodes at the end of all visited
paths is called the fringe, frontier or border.

๏ Implemented as a queue FRINGE.
•INSERT(node,FRINGE)

•REMOVE(FRINGE)

๏ The ordering of the nodes in FRINGE defines the search strategy.

48

Fringe

Fringe (Frontier)49

Search strategies

๏ A search strategy is defined by picking the order of node expansion

๏ Strategies are evaluated along the following dimensions:
• Completeness: Is the algorithm guaranteed to find a solution when there is one, and to

correctly report failure when there is not?
• Cost optimality: Does it find a solution with the lowest path cost of all solutions?
• Time complexity: How long does it take to find a solution? This can be measured in seconds,

or more abstractly by the number of states and actions considered.
• Space complexity: How much memory is needed to perform the search?

๏ Time and space complexity are measured in terms of
• b: maximum branching factor of the search tree
• d: depth of the least-cost solution
• m: maximum depth of the state space (may be ∞)

50

Uninformed vs. Informed Strategies

๏ Uninformed (or blind) strategies have no clue about how close a state is to the goal(s).

๏ Informed (or heuristic) strategies exploits such information to assess that one node is “more
promising” than another.

51

Uninformed Strategies

Uninformed search strategies use only the information available in the problem definition.

๏ Breadth-First Search

๏ Depth-First Search

๏ Uniform-Cost Search

๏ Depth-Limited Search

๏ Iterative Deepening Search

52

Breadth-First Search

Breadth-First Search (BFS)

๏ BFS first visit all the nodes at the same depth first and then proceed visiting nodes at a deeper
depth (strategy: expand a shallowest node first)

54

Breadth-First Search

๏ A node can be reached from different nodes using
different paths

๏ But we need to visit each node only once.

๏ So, we mark each node differently into 3 categories -
unvisited, discovered and complete.
• Initially, all nodes are unvisited. After visiting a node

for the first time, it becomes discovered.
• A node is complete if all of its adjacent nodes have

been visited.
• Thus, all the adjacent nodes of a complete node are

either discovered or complete.

55

https://www.codesdope.com/course/algorithms-bfs/

https://www.codesdope.com/course/algorithms-bfs/

Breadth-First Search

๏ Thus after visiting a node, we first visit all its sibling and then their children.

๏ We can use a first in first out (FIFO) queue to achieve this (Fringe is a FIFO queue).

๏ Starting from the source, we can put all its adjacent nodes in a queue

56

Breadth-First Search57

Breadth-First Search (BFS) Properties

๏ Is it complete?
• Yes. d must be finite if a solution exists.

๏ Is it optimal?
• Only if costs are all 1.

๏ Search time?
•

๏ Fringe space?
• Has roughly the last tier, so

58

d

d

shallowest solution

Depth-First Search

Depth-First Search (DFS)

๏ DFS first explores the depth of the graph before the breadth i.e., it traverses along the
increasing depth and upon reaching the end, it backtracks to the node from which it was started
and then do the same with the sibling node.

60

Depth-First Search

๏ Similar to the BFS, we also mark the vertices white, gray and black to represent unvisited,
discovered and complete respectively.

๏ Fringe = LIFO queue, i.e., a stack that put successors at front.

61

https://www.codesdope.com/course/algorithms-dfs/

https://www.codesdope.com/course/algorithms-dfs/

Depth-First Search62

Depth-First Search (DFS) Properties63

๏ Is it complete?
• m could be infinite, so only if we prevent

cycles

๏ Is it optimal?
• No, it finds the “leftmost” solution,

regardless of depth or cost

๏ Search time?
• O(bm) Terrible if m is much larger than d,

but if solutions are dense, may be much
faster than breadth-first.

๏ Fringe space?
• Only has siblings on path to root, so O(bm),

i.e., linear space!

Exercise: DFS vs. BFS

๏When will BFS outperform DFS?

๏When will DFS outperform BFS?

64

Depth-Limited Search

๏ = depth-first search with depth limit L, i.e., nodes at depth L have no successors

65

Iterative Deepening Search

๏ Idea: get DFS’s space advantage with BFS’s time / shallow-solution advantages
• Run a DFS with depth limit 1. If no solution...
• Run a DFS with depth limit 2. If no solution...
• Run a DFS with depth limit 3.

66

Cost-Sensitive Search

BFS finds the shortest path in terms of number of actions.
It does not find the least-cost path. We will now cover
a similar algorithm which does find the least-cost path.

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2

Cost-Sensitive Search67

Uniform-Cost Search

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost) S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164 11
5

713

8

1011

17 11

0

6

3 9

1

1

2

8

8 2

15

1

2

Cost
contours

2

Uniform-Cost Search (Dijkstra’s algorithm)69

Equivalent to breadth-first
if step costs all equal.

Properties of Uniform-Cost Search

๏ Complete? Yes, if step cost ≥ ε > 0 (ε is the lower
bound of each action), it will never getting caught
going down a single infinite path

๏ Time? # of nodes with g ≤ cost of optimal solution,
O(bceiling(C*/ ε)) where C* is the cost of the optimal
solution.

๏ Space? # of nodes with g ≤ cost of optimal solution,
O(bceiling(C*/ ε)).

๏ Optimal? Yes – nodes expanded in increasing order
of g(n).

๏

70

Uniform-Cost Search Issues

๏ Remember: UCS explores increasing cost contours

๏ The good: UCS is complete and optimal!

๏ The bad:
• Explores options in every “direction”
• No information about goal location

๏ We’ll fix that soon!

71

Summary of Algorithms72

Summary

๏ All these search algorithms are the same except for fringe strategies
• Conceptually, all fringes are priority queues (i.e. collections of nodes with attached priorities)
• Can even code one implementation that takes a variable queuing object

73

Thanks! Q&A

74

